203 research outputs found

    The “Who?” Question in the Hate Speech Debate: Part 1: Consistency, Practical, and Formal Approaches

    Get PDF
    This two-part article addresses the “Who?” question in the hate speech debate: namely, which characteristics, social identities or statuses should or should not be treated as protected characteristics within a body of hate speech laws? Using United Kingdom incitement to hatred laws as a focal point, the article outlines and critically appraises five broad approaches to specification. Part 1 deals with consistency specification, which highlights norms of consistency both within incitement to hatred law itself and in relation to other laws, practical specification, which focuses on the ostensible goals or apparent aims of incitement to hatred laws, and formal specification, which looks at the formal qualities of the characteristics themselves and to the different forms of people’s relationships with those characteristics. And Part 2 considers functional specification, which concentrates on the underlying or real functions, purposes or objectives of incitement to hatred laws, and democratic specification, which appeals to democratic procedures as well as to democratic values, norms and principles that speak to the proper scope of incitement to hatred laws. Along the way I shall also critically assess a range of substantive arguments about which particular characteristics should or should not be covered by incitement to hatred laws given the aforementioned approaches. My main conclusion shall be that each of the approaches has its strengths and weakness and that, partly because of this, no single approach is adequate by itself as a tool for specifying the proper scope of incitement to hatred laws, but also, by the same token, no approach should be ruled out entirely. Instead, the best strategy is one that combines together all five approaches in reasonable ways given the law, the characteristic and the context

    Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory

    Get PDF
    EFSA was asked to update the 2015 EFSA risk assessment on Xylella fastidiosa for the territory of the EU. In particular, EFSA was asked to focus on potential establishment, short‐ and long‐range spread, the length of the asymptomatic period, the impact of X. fastidiosa and an update on risk reduction options. EFSA was asked to take into account the different subspecies and Sequence Types of X. fastidiosa. This was attempted throughout the scientific opinion but several issues with data availability meant that this could only be partially achieved. Models for risk of establishment showed most of the EU territory may be potentially suitable for X. fastidiosa although southern EU is most at risk. Differences in estimated areas of potential establishment were evident among X. fastidiosa subspecies, particularly X. fastidiosa subsp. multiplex which demonstrated areas of potential establishment further north in the EU. The model of establishment could be used to develop targeted surveys by Member States. The asymptomatic period of X. fastidiosa varied significantly for different host and pathogen subspecies combinations, for example from a median of approximately 1 month in ornamental plants and up to 10 months in olive, for pauca. This variable and long asymptomatic period is a considerable limitation to successful detection and control, particularly where surveillance is based on visual inspection. Modelling suggested that local eradication (e.g. within orchards) is possible, providing sampling intensity is sufficient for early detection and effective control measures are implemented swiftly (e.g. within 30 days). Modelling of long‐range spread (e.g. regional scale) demonstrated the important role of long‐range dispersal and the need to better understand this. Reducing buffer zone width in both containment and eradication scenarios increased the area infected. Intensive surveillance for early detection, and consequent plant removal, of new outbreaks is crucial for both successful eradication and containment at the regional scale, in addition to effective vector control. The assessment of impacts indicated that almond and Citrus spp. were at lower impact on yield compared to olive. Although the lowest impact was estimated for grapevine, and the highest for olive, this was based on several assumptions including that the assessment considered only Philaenus spumarius as a vector. If other xylem‐feeding insects act as vectors the impact could be different. Since the Scientific Opinion published in 2015, there are still no risk reduction options that can remove the bacterium from the plant in open field conditions. Short‐ and long‐range spread modelling showed that an early detection and rapid application of phytosanitary measures, consisting among others of plant removal and vector control, are essential to prevent further spread of the pathogen to new areas. Further data collection will allow a reduction in uncertainty and facilitate more tailored and effective control given the intraspecific diversity of X. fastidiosa and wide host range.Additional co-authors: EFSA Panel on Plant Health (PLH), Wopke van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia ZappalĂ , Donato Boscia, Gianni Gilioli, Rodrigo Krugner, Alexander Mastin, Anna Simonetto, Joao Roberto Spotti Lopes, Steven White, JosĂ© Cortinas Abrahantes, Alice Delbianco, Andrea Maiorano, Olaf Mosbach‐Schulz, Giuseppe Stancanelli, Michela Guzzo, Stephen Parnel

    Pest categorisation of Botryosphaeria kuwatsukai

    Get PDF
    The Panel on Plant Health performed a pest categorisation of Botryosphaeria kuwatsukai, the causal agent of fruit rot and wart bark on apple and pear, for the EU. The pathogen, which was recently characterised, is a well-defined fungal species affecting mainly Pyrus pyrifolia (Japanese pear), although Pyrus communis (European pear) and apples (Malus domestica) can also be affected. The host status of other plant species reported in the literature, i.e. Cydonia oblonga, Chaenomeles japonica, Malus micromalus, Vitis vinifera and Prunus spp., is unclear. B. kuwatsukai is currently present in Japan, China, Korea, Taiwan and the USA, and uncertainty exists about its presence in other areas, where the disease has been associated with other Botryosphaeria spp. The pathogen is not known to occur in the EU and is listed in Annex IIAI of Directive 2000/29/EC. It could potentially enter the EU on host plants for planting and fruit originated in infested countries. Climatic conditions in the EU are suitable for the establishment and spread of the pathogen, as its epidemiology is similar to that of other Botryosphaeria spp. present in the EU. Pears and apples are widely distributed in the EU. In the infested areas, B. kuwatsukai causes branch dieback and fruit rot resulting in yield/quality losses. Its introduction and spread in the EU could impact pear and apple production, although the magnitude is unknown. Cultural practices and chemical measures may reduce the inoculum sources but cannot eliminate the pathogen. Phytosanitary measures are available to mitigate the risk of introduction and spread of the pathogen in the EU. B. kuwatsukai meets all criteria assessed by EFSA for consideration as a potential Union quarantine pest. As B. kuwatsukai is not known to occur in the EU, this criterion to consider it as a Union regulated non-quarantine pest is not met

    Pest categorisation of Fusarium oxysporum f. sp. albedinis

    Get PDF
    The Panel on Plant Health performed a pest categorisation of the soil‐borne fungus Fusarium oxysporum f. sp. albedinis, the causal agent of Fusarium wilt of date palm, for the EU. The identity of the pest is well established and reliable methods exist for its detection/identification. The pest is listed in Annex IIAI of Directive 2000/29/EC and is not known to occur in the EU. Fusarium oxysporum f. sp. albedinis is present in Morocco, Algeria and Mauritania. Its major host is Phoenix dactylifera, which is the only Phoenix species known to be affected by the pest. Uncertainty exists about the host status of Lawsonia inermis, Medicago sativa and Trifolium spp. cultivated as intercrops in the infested areas and reported as being symptomless carriers of the pest. The pest could potentially enter the EU on host plants and soil/growing media originating in infested Third countries. The current pest distribution and climate matching suggest that the pest could establish and spread in the EU wherever the host is present. In the infested areas, the pest causes vascular wilt resulting in yield/quality losses and plant death. It is expected that pest introduction and spread in the EU could impact date production. The pest is expected to have high environmental consequences in the Elche area (Spain), which is a UNESCO World Heritage Site, as well as other EU areas where P. dactylifera is grown as an amenity tree. Current EU phytosanitary measures are not fully effective at mitigating the risk of introduction and spread of the pest in the EU. Fusarium oxysporum f. sp. albedinis meets all the criteria assessed by EFSA for consideration as potential Union quarantine pest. As the pest is not known to occur in the EU, this criterion to consider it as Union regulated non‐quarantine pest is not met

    Hot water treatment of Vitis sp. for Xylella fastidiosa

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Plant Health (PLH) reviewed Italian technical guidelines and the ANSES (Agence nationale de sĂ©curitĂ© sanitaire de l’alimentation, de l’environnement et du travail) opinion on the use of hot water treatment (HWT) on Vitis sp. planting material, assessing its efficacy in the elimination of the xylem-invading bacterial pathogen, Xylella fastidiosa. HWT is a robust and reliable technique used to destroy life stages of pests (insects, nematodes) and to inactivate pathogens (phytoplasma, bacteria, fungi) in dormant plant propagation materials (grapevine and other crops). An effective HWT sanitizes the planting material without affecting plant survival and development. For grapevine, HWT to eliminate the Grapevine flavescence dorĂ©e phytoplasma (FD) from planting materials is among the special requirements for the introduction and movement of Vitis sp. to protected zones in the EU. The conditions of 50°C for 45 min, prescribed and recommended to sanitize grapevine planting material against FD, are considered by the Panel to be also effective against X. fastidiosa and its subspecies. Despite uncertainties on variable thermotolerances of the bacteria, a HWT treatment of 50°C for 45 minutes can effectively account for different thermotolerances. It should be noted that the quality of the HWT is subject to the proper application of the operating procedures to guarantee vigorous growth and pathogen freedom of planting material

    Vitis sp. response to Xylella fastidiosa strain CoDiRO

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Plant Health assessed a scientific report submitted by the Italian Authorities to the European Commission to support a request to delist Vitissp. from Annex I (‘specified plants’) of the Commission Implementing Decision (EU) 2015/789 of 18 May 2015 to prevent the introduction into and the spread within the Union of Xylella fastidiosa (Wells et al.). The report comprised (i) surveys to detect X. fastidiosa in vineyards located in the epidemic zone of CoDiRO with high numbers of diseased olive trees; (ii) inoculation experiments to infect grapevine with a X. fastidiosa isolate ‘De Donno’ from CoDiRO diseased olives; and (iii) vector transmission experiments with X. fastidiosa infective Philaenus spumarius. The Panel acknowledges the difficulties in providing evidence about this hitherto unknown pathogen/vector/host interaction to support the hypothesis that a plant species cannot be infected with a pathogen. Although field surveys to detect X. fastidiosa in grapevine were negative, there was no supporting information on infective vector populations present in the vineyards. Hence absence of infection pressure cannot be excluded. Furthermore the failure to infect grapevine plants either by artificial inoculation or by vector transmission might be due to inoculation conditions not appropriate to induce infections in grapevine. The detection of X. fastidiosa DNA in inoculated grapevine plants even 12 months after inoculation, although localised at the inoculation points, cannot exclude that the DNA amplified by qPCR was from viable cells. The results presented are coherent and provide converging lines of evidence that grapevine (Vitis vinifera) is not a major susceptible host of X. fastidiosa strain CoDiRO. However, from the experimental evidence it is premature to exclude that systemic infections of V.vinifera and Vitissp. occur and that infections at limited foci could serve as a source of inoculum

    Pest categorisation of Longidorus diadecturus

    Get PDF
    The Panel on Plant Health performed a pest categorisation of Longidorus diadecturus (Nematoda: Longidoridae) for the EU. The nematode is a well-defined taxon and was described from Ontario, Canada and later reported from some states in the USA. The nematode is not present in the EU. It is regulated by Council Directive 2000/29/EC, listed in Annex I A I as L. diadecturus Eveleigh and Allen. It is a migratory ectoparasitic nematode species puncturing cells of plant roots thereby able to transmit the nepovirus Peach rosette mosaic virus (PRMV). The pest is found in soil associated with plant species belonging to different families. L. diadecturus is able to cause direct damage to plants, but its main damage is caused by vectoring PRMV. Soil is a potential pathway for this nematode for entry into the EU. The nematode is able to survive adverse conditions, but the virus may not persist inside the nematode for extended periods. Climatic conditions in the EU are similar to those found in the countries where the pest is currently present. Hosts of the nematode (and the associated virus) are, e.g. peaches and grapes; those crops are also widely cultivated in the EU. The nematode only moves short distances (around 1 m) but may be spread with soil moving activities. Measures are available to inhibit entry via soil as such. Entry of the nematode with soil attached to plants for planting that are not regulated is possible. L. diadecturus does satisfy all the criteria that are within the remit of EFSA to assess to be regarded as a potential Union quarantine pest

    Pest categorisation of Scirtothrips citri

    Get PDF
    The Panel on Plant Health performed a pest categorisation of the citrus thrips, Scirtothrips citri (Moulton) (Thysanoptera: Thripidae), for the European Union (EU). This is a well-de fi ned and distinguishable species, occurring in North America and Asia. Its precise distribution in Asia is uncertain. S. citri is a pest of citrus and blueberries and has been cited on over 50 different host species in 33 plant families. Whether all plants reported as hosts are true hosts, allowing population development of S. citri , is uncertain. S. citri feeds exclusively on young actively growing foliage and fruit. It is not known to occur in the EU and is listed in Annex IIAI of 2000/29/EC as a harmful organism. The international trade of hosts, as either plants for planting or cut fl owers, provide potential pathways into the EU. However, current EU legislation prohibits the import of citrus plants for planting. Furthermore, measures aimed at the import of plants for planting in a dormant stage (no young foliage or fruits present) with no soil/growing medium attached, decreases the likelihood of the pest ’ s entry via other hosts. Considering that there are regional climatic similarities where S. citri occurs in the USA with climates in the EU, and taking EU host distribution into account, S. citri has the potential to establish in the EU, especially in citrus and blueberry growing regions around the Mediterranean where quality losses in citrus and yield losses in blueberry could occur. Phytosanitary measures are available to inhibit the likelihood of introduction of S. citri from infested countries. Considering the criteria within the remit of EFSA to assess its status as a potential Union quarantine pest (QP) or as a potential regulated non-quarantine pest (RNQP), S. citri meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union QP

    Pest categorisation of Aschistonyx eppoi

    Get PDF
    The Panel on Plant Health performed a pest categorisation of the gall midge Aschistonyx eppoi Inouye (1964) (Diptera, Cecidomyiidae), for the EU. A. eppoi is a well‐defined and distinguishable species, native to Japan and Korea, and recognised as a pest of Juniperus chinensis, although our knowledge is solely based on one unique publication. A. eppoi is absent from the EU, and is listed in Annex IIAI of Directive 2000/29/EC. Its host plants, Juniperus spp. are also listed in Annex III of Directive 2000/29/EC. Plants for planting and branches are considered as pathways for this pest. A. eppoi has been intercepted twice (1974; 1975) in the EU and has been eradicated. The pest is likely to affect bonsai plants of J. chinensis if it were to establish in the EU territory. However, as it is unknown whether A. eppoi would attack the Juniperus spp. that occur in the EU, its potential impact on the wild vegetation is also unknown. As the pest originates from areas with warm climates, impact outdoors would affect the southern parts of the EU. Cultural control (destruction of infested material) and chemical control are the major control methods. All criteria assessed by EFSA for consideration as a potential quarantine pest are met, although there are high uncertainties regarding impact. The species is presently absent from the EU, and thus the criteria for consideration as a potential regulated non‐quarantine pest are not met

    Pest categorisation of Oligonychus perditus

    Get PDF
    The Panelon Plant Health performed a pest categorisation of the spider mite Oligonychus perditus Pritchard and Baker () (Acari, Tetranychidae), for the EU. O.perditus is a well-defined and distinguishable species, native to China, Japan, Korea and Taiwan, and recognised mainly as a pest of Juniperus spp., Chamaecyparis spp. and Platycladus spp. It is absent from the EU and is listed in Annex IIAI of Directive 2000/29/EC. Its host plants, Juniperus spp. and Chamaecyparis spp., are also listed in Annex III of Directive 2000/29/EC. Plants for planting, cut flowers and branches are considered as pathways for this pest, which is also able to disperse naturally with the wind, over rather short distances. O.perditus has repeatedly been intercepted in the EU but does not appear to have established, although a small population of O.perditus survived 8years on a single imported plant in the Netherlands. As the host range of O.perditus coincides with that of the closely related cosmopolitan Oligonychus ununguis, which occurs in the EU, it is quite likely that the presence of O.perditus in the EU would cause little additional damage. Cultural control (sanitation and destruction of infested material) and chemical control (acaricides, e.g. abamectin) are the major control methods. All criteria assessed by EFSA for consideration as a potential quarantine pest are met, though there are some uncertainties regarding impacts. The species is presently absent from the EU, and thus, the criteria for consideration as a potential regulated non-quarantine pest are not met
    • 

    corecore